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ABSTRACT 
 

 We have used a microbeam on large grain sample concept to carry out an inelastic x-ray scattering 

experiment to map the full phonon dispersion curves of an fcc δ-phase Pu-Ga alloy. This approach 

obviates experimental difficulties with conventional inelastic neutron scattering due to the high 

absorption cross section of the common 239Pu isotope and the non-availability of large (mm size) single 

crystal materials for Pu and its alloys.  A classical Born von-Kármán force constant model was used to 

model the experimental results, and no less than 4th nearest neighbor interactions had to be included to 

account for the observation. Several unusual features including, a large elastic anisotropy, a small 

shear elastic modulus, (C11 - C12)/2, a Kohn- like anomaly in the T1[011] branch, and a pronounced 

softening of the T[111] branch towards the L point in the Brillouin are found. These features can be 

related to the phase transitions of plutonium and to strong coupling between the crystal structure and 

the 5f valence instabilities. Our results represent the first full phonon dispersions ever obtained for any 

Pu-bearing material, thus ending a 40-year quest for this fundamental data. The phonon data also 

provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified 

by recent dynamical mean field theory (DMFT) calculations for δ-plutonium.   
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I.  INTRODUCTION 

Plutonium (Pu) is certainly the most astonishing of the actinides, the class of the elements in which 

the 5f electron shell is progressively filled.  Indeed, in the early part of this series (Th, Pa, U and Np), 

the 5f electrons contribute to the bonding between atoms.  The 5f participation in bonding results in an 

atomic volume dependence on electron population similar to that of the transition metal series.  On the 

other hand, the heavier members of the actinide series (Am and beyond) have larger atomic volumes 

that are almost independent of the 5f electron population.  This behavior resembles those of the 

lanthanide elements; the 5f states are localized and do not participate in the bonding.  In Pu, the 5f 

electrons are “on the edge,” 1 and it is this unique 5f configuration that gives this element a host of 

unusual properties.2   Since the discovery of Pu in 1941, the element’s eccentricities have both awed 

and perplexed researchers. Although the element’s complexity and unpredictability have rendered it a 

challenge to study, scientists persist because of the need to understand and predict plutonium’s 

behavior under various temperatures and pressures and to determine how the element might vary over 

time. Understanding its properties is indeed critical for the safe handling, use, and long-term storage of 

this highly toxic and radioactive material.3  

The most notably unusual property of Pu is perhaps the presence of 5 solid-state allotropic phase 

transformations in the pure element.  The α phase, which is stable from low temperature to 122oC, 

transforms successively to β→ γ → δ→ δ’→ ε→ liquid with increasing temperature4 accompanied by 

large volume expansions and collapses along the way to the melt.  The pure metal melts at a relatively 

low temperature ~640oC to yield a liquid which is higher in density than that of the solid from which it 

melts.  The fcc (face-centered-cubic) δ phase is the equilibrium phase in the range 319 – 451oC, and 

has a density of 15.92g/cc.  This high temperature δ phase can be stabilized or more correctly retained 

at room temperature and below by alloying with small amounts of Group III metals such as Al or Ga.5  
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In doing so, the metastable δ-phase field is expanded from high temperature to room temperature and 

below at the expense of the γ and β  phases6, suggesting very similar ground state energies for these 

structures. 7  

Understanding the physical basis for the intriguing properties of Pu materials such as force 

constants, sound velocities, elastic constants, phase stability and thermodynamic properties critically 

hinges on the ability to produce high quality experimental data. Of these, phonon dispersion curves 

(PDCs) are key to the elucidation of many of these physical phenomena.  However, PDCs in plutonium 

and its alloys have defied measurement for the past few decades. This is due to a combination of the 

high thermal-neutron absorption cross section of the most common isotope (239Pu) and the inability to 

grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron 

scattering. These limitations have recently been overcome experimentally by the application of the 

high resolution inelastic x-ray scattering (HRIXS)8  technique combined with the use of an x-ray beam 

focused to microns size on large single-crystal domains in polycrystalline specimens. With this 

method, samples with volumes as small as 10-4 mm3 can now be studied. These capabilities have 

opened up new experimental opportunities for materials which are only available in small quantities, as 

is the case for many actinide systems,9  and enabled us to recently map the full PDCs of an fcc δ-Pu-Ga 

alloy.8 

 Moreover, only recently have theoretical computations of the Pu PDCs begun to overcome the 

difficulties in treating the 5f electrons accurately within the standard first-principles methods.10-12 Thus, 

the PDCs for Pu-bearing systems have remained essentially unknown experimentally, and theoretically 

until recently. 

The experimental details associated with the microbeam on large grain sample approach in 

combination with the use of HRIXS to map the full PDCs of an fcc δ Pu-Ga alloy are presented in Sec. 
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II. The data and lattice dynamical calculations are presented in Sec. III. Section IV discusses the Born 

von Kármán analysis, phonon-derived elastic and thermodynamic properties, phonon softening and 

phase transformations, the Kohn effect and theoretical considerations. Our conclusions are summarized 

in Sec. V.  This study provides the first full bona-fide data set for realistic calculations and simulations  

of thermodynamic and other physical properties for Pu and its alloys. The phonon dispersion results 

also provide a critical test for theoretical treatments of highly correlated 5f electron systems, as 

exemplified by recent dynamical-mean-field-theory calculations for δ-plutonium11 with excellent 

qualitative and semi-quantitative agreement between theory and experimental data.  

      

II.  EXPERIMENTAL DETAILS 

Our samples were large-grain polycrystalline specimens prepared by a strain-enhanced re-

crystallization technique from an fcc δ Pu-Ga alloy containing 2 at. % Ga.13 A cylinder of the 

homogenized alloy, 2.8 mm diameter by 2mm high was first uniaxially compressed by 6% and 

annealed at 430oC in a vacuum (5 x 10-5 Torr) for 5 days.  Two such strain-anneal cycles were used. 

The doubly annealed cylinder was then sliced at 45 deg. to the cylinder axis into 3 slices, each ~500µm 

thick using a low speed diamond blade (150µm wide blade) saw.  The discs were lapped with a 

succession of lapping films, 600 grit SiC, 30µm, 12µm, and 3µm γ-Al2O3 to a thickness of ~ 40 µm. A 

fine polish with 1 µm diamonds followed to remove ~12 µm from each side, yielding a thickness of 

~16-18µm.  The samples were then electropolished from both sides using a TEM (transmission 

electron microscopy) electropolishing system such that a shallow dimple was electrochemically 

removed from both side of the disc specimens to render a final thickness of ~ 8-10 µm. This thickness 

is about one absorption length for δ-Pu14 at 21.747 keV allowing for optimal IXS measurements in 

transmission geometry. This procedure produced a microstructure with an average grain size of ~90 
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µm as shown in Fig. 1. The samples were dip coated in liquid polyamide and cured at 50o C for 1 hr. 

This provided the first containment layer.  The polyamide coated Pu-Ga foil was then loaded into a 

leak-proof stainless steel cell in a dry nitrogen atmosphere. The cell contains a pair of kapton windows 

each 125 µm thick which provide a second level of containment. An additional metal containment was 

used for each sample cell for shipment from Livermore to Grenoble in accordance with the U.S. 

Department of Transportation regulations and the French CIREA approved procedures for handling 

and transporting radioactive materials.15 

 

High resolution IXS experiments were conducted on beamline ID28 at the European 

Synchrotron Radiation Facility (ESRF) in Grenoble, France. The storage ring was operating at an 

electron energy of 6 GeV and injection current of 200 mA. The synchrotron radiation was 

monochromatized at 21.747 keV utilizing the Si(11 11 11) configuration to yield a total instrumental 

energy resolution of 1.8 meV full-width-at-half-maximum (FWHM) with the dimensions of the 

focused x-ray beam 30 µm horizontal x 60 µm vertical FWHM (see Fig. 1). With this beam, the flux on 

the sample was measured to be ~ 3 x 109 photons/s.  The scattered photons were energy-analyzed by 

five crystal analyzers in Rowland circle geometry employing the same reflection order as the high-

resolution backscattering monochromator. The momentum transfer, Q = 2k0sin(θs/2), where k0 is the 

wave vector of the incident photons and θs the scattering angle, was selected by rotating the 

spectrometer arm in the horizontal plane. The momentum resolution was set by slits to 0.4 nm-1. An 

on- line fluorescent screen, coupled to a CCD camera, allowed us to map and select single-crystal 

domains in the specimen, and orient them according to the requirements of the scattering geometry for 

the longitudinal and transverse acoustic phonon branches. With the small beam dimensions, single-

crystal domains could be selected with a typical mosaic spread ranging between 0.5 and 1.5 degrees. In 
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the longitudinal geometry, after appropriate momentum transfer corrections,16 the spectra of all five 

analyzers could be utilized.  This was not possible for the transverse scans, and therefore the spectrum 

of only one analyzer was utilized.  The energy scans were performed by varying the monochromator 

temperature while the analyzer temperature was kept constant.  Conversion from the temperature scale 

to the energy scale is accomplished by using the following relation: ∆E/E = α∆T, where α = 2.58 x 10-

6 K-1 is the linear thermal expansion coefficient of Si at room temperature. Details of the HRIXS 

instrumentation have been described elsewhere.17 All phonon spectra in this study were collected at 

room temperature. 

 

III.   RESULTS 
 
 

Typical IXS spectra (Fig. 2) are shown for longitudinal acoustic (LA) phonons along the [111] 

direction at selected reduced momentum transfer values (ξξξ).  At a given q value, the count rate with 

error bars is plotted versus the energy of the analyzer.  Each spectrum in Fig. 2 results from a sum of 

two individual 4-hr scans. For each scan, the integration time per data point was 90s.  The spectra are 

each characterized by an elastic contribution centered at zero energy and two inelastic contribut ions, 

corresponding to the creation (energy-loss, Stokes) and annihilation (energy gain, anti-Stokes) of an 

acoustic phonon.  In order to extract the phonon energies, the spectra were fitted by using a standard χ2 

minimization procedure constraining the system by assuming an equal energy separation of the Stokes 

and anti-Stokes excitations from the central Rayleigh line with the intensity ratio governed by the 

thermal phonon population factor, and by convolving the experimental spectra with three model 

Lorentzian functions to match the intrinsic energy resolution profiles of the instrument.   

Values of the phonon energies for the three principal directions of the fcc δ Pu-Ga fcc structure, 

with estimates of overall errors resulting from the χ2 minimization algorithm, are given in Table 1. The 
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experimental phonon dispersion curves along the three symmetric directions are plotted as points in 

Fig. 3, together with a fit (colored lines) obtained by means of a standard Born-von Kármán (B-vK) 

force constant model.18   An adequate fit to the experimental dispersions is obtained with this method if 

interactions up to the fourth nearest neighbor are included.  Along the [ξ00] and [ξξξ] directions, the 

transverse modes are degenerate and ζ, the direction of vibration of the single atom in the unit cell, 

may lie in any direction normal to q.  Along the [ξξ0] direction, the two transverse modes are distinct 

with ζ lying in the [011
__

] and [001] directions for T1 and T2 respectively. 

 Three unusual features in the PDCs of δ Pu-Ga alloy are noteworthy: (a) similarity in the slopes 

of the LA(ξ00) and TA(ξ00) branches, (b) a kink in the T1(ξξ0) indicative of a Kohn anomaly19  and 

(c) a pronounced softening of the TA(ξξξ) branch towards the L point.  These features will be 

discussed in detail below. 

 

IV.  DISCUSSION 

1. Born-von Kármán Analysis 

The experimental dispersion curves can be analyzed using the classical Born-von Kármán (B-

vK) model with various coordination shells of interacting neighbors.  Using a procedure of linear least 

squares fitting to the dispersions, inter-atomic force constants as well as inter-planar force constants 

are determined.20   In a fcc lattice there is insufficient information in the dispersion curves along the 

principal symmetry directions to permit a fit beyond the fourth nearest neighbors (4NN).  Constraints 

on the long-range force constants must be imposed to include higher neighbors.  For example, two 

axially symmetric constraints are needed for a six nearest neighbor (6NN) model and four for an eight-

nearest neighbor (8NN) model (see Table 2).   
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A series of B-vK calculations has been performed systematically using models with 2NN to 

8NN to fit the IXS data.  The inter-atomic force constants obtained from these models are listed in 

Table 2.  As seen in Fig. 3 (colored lines), when no constraints are imposed and the forces extending to 

4NN are considered, a reasonable fit to the dispersion curves is obtained.  In Fig. 4, the goodness of fit, 

χ2, is plotted versus the number of neighbors included in the fit.  At 3NN, χ2 drops significantly but 

decreases much more slowly upon including additional neighbors.  In fact, beyond 4NN, the long-

range force constants turn out to be much smaller. Extending the fit to eighth neighbors improves the 

goodness of the fit somehow, but the fits tend to reproduce the noise wiggles and unphysical 

oscillations. 

As noted by Dutton et al.,21 in the fcc lattice, fourth neighbors are the most distant which can be 

reached in two nearest-neighbor steps.  From this structural consideration it seems reasonable that the 

force constants for neighbors more distant than fourth have distinctly smaller values. Furthermore, it is 

interesting to note that the 4NN model for a fcc lattice includes a total of 54 atoms about a central 

atom: 12 (110)-neighbors from the first coordination shell, 6 (200)-neighbors from the second shell, 24 

(211)-neighbors from the third and 12 (220)-neighbors from the fourth shell.  By composition, the 54 

neighbors contain a Ga atom in the Pu-2 at. % Ga alloy, implying that the Ga has to be included in the 

crystal dynamics of the system within the B-vK framework. 

 

2.  Elastic Properties 

 The sound velocity, V, associated with each of the phonon branches shown in Fig. 3 can be 

determined directly from a linear fit to the low q region around the Γ point and are shown in Table 3.  

The elastic moduli, Cij, are then computed directly using Cij = ρ.V2 , where ρ is the density of the Pu-

Ga alloy and equals 15.82 gm/cc at room temperature.  In a cubic crystal, if the interatomic forces are 
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central (ie.: purely radial, angle independent), then the Cauchy relation for the second order elastic 

constants is fulfilled.22 

      C44 = C12. 

Deviations from this relation account for the existence of non-central forces.  In Table 4, the 

experimental elastic constants of all fcc metals reported in the literature23-43 are listed. Most of these 

elastic moduli were determined from inelastic neutron scattering, except for those of Ir24, Pt25, Rh26 and 

Th36, which were determined from ultrasonic measurements. The elastic constants for Pt were 

measured at 90K25, and those of β-La27 and γ-Fe42 at 660K and 1428K respectively at which the fcc 

phase of these two metals are thermodynamically stable. Deviations from the Cauchy relation, as 

defined by C44  – C12  are also reported in Table 4.  Th appears to be the only fcc metal that obeys the 

Cauchy equality with C44 ~ C12 (within 0.2 %), implying that the interatomic forces in Th are largely 

central.  The rest of the fcc metals exhibit substantial deviation from Cauchy equality, implying that 

non-central and angular forces are operative in the lattices.  Furthermore, the deviation for most fcc 

metals is negative, ie: C44 < C12, whereas for Ir, γ-Ce, Yb, and δ-Pu-Ga, the deviation is positive, ie. 

C44 > C12. The positive deviation appears to associate with variable valency of these elements and/or 

with the strong electron correlation in these f metal systems exemplified by γ-Ce, fcc Pu-Ga, and pure 

δ-Pu. This point will be discussed further in light of the observed softening of the T(ξξξ) branch.. 

 

Table 4 reports also the anisotropy factor, defined44 as the ratio of C44/C’, where C’ = 1/2[C11 – 

C12], associated with the two non-degenerate transverse T2(ξξ0) and T1(ξξ0) branches in the phonon 

dispersion curves shown in Fig. 3.  In fcc metals, the elastic anisotropy factor increases from simple p 

metals like Al to transition metals and rare-earth metals up a value of ~4.  For the fcc Pu – 2 at.% Ga 

alloy, our phonon data shows a high value of 6.  The present result confirms an earlier ultrasonic 

measurement on a higher Ga (3.4 at. %) alloy by Ledbetter and Moment43 who reported a factor of 7 
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and discussed the elastic properties in δ Pu-Ga alloys in detail. The extremely high elastic anisotropy 

with regard to propagation of elastic waves in fcc Pu is also substantiated by a recent first principles 

dynamical mean field theory (DMFT) calculation11 which yielded an even higher theoretical 

anisotropy factor of 8 for pure δ-Pu. 

 

3.  Phonon Density of States, Lattice heat capacity and Debye temperature  

Using the phonon dispersion relations derived from the 4NN Born-von Kármán model as 

shown in Fig. 3, a phonon density of states (DOS) has been computed.  The computation was carried 

out using a grid of (2π/a)/500, and the result is normalized such that the area under the curve 

corresponds to 3 states per atom. A Gaussian smoothing by 0.03 meV was applied to produce the final 

plot shown in Fig. 5(a). The peak at 11.7 meV in the DOS contains major contributions from all three 

L branches and the T2(011) branch near the X point.  The peak at 6.2 meV has contributions from all 

branches except the T(111) branch which contributes most significantly to the “rounded-off” feature at 

2.1 meV.  Critical points obtained from the symmetry points in the zone are indicated in the DOS plot. 

 

 The DOS is used to compute the lattice specific heat, cv, as a function of temperature, and the 

result is presented in Fig 5(b).  At high temperature, cv approaches the classical Dulong and Petit limit 

of 3R = 5.96 cal/mole-K, where R is the molar gas constant. At low temperature, the electronic 

contribution to the heat capacity, γT, becomes significant.45,46  Indeed, by measuring the total heat 

capacities of a δ-Pu0.95 Al0.05 alloy and pure α-Pu at low temperatures down to 2K and subtracting the 

lattice contribution derived from inelastic neutron scattering data47, Lashley et al.48 found that the γ 

value for the δ phase alloy is almost a factor of 4 higher than that for pure α-Pu, suggesting proximity 

of the δ phase to a quantum critical point. 
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From the computed lattice specific heat, the Debye temperature, ΘD, is also computed as a 

function of temperature. This is plotted in Fig. 5(c). Above 100K, the Debye temperature, ΘD(∞),  

remains remarkably constant at a value of ~119 K.  At 0 K, the calculated value ΘD(0) is 114 K, which 

is in excellent agreement with the values of 115 K and 120 K determined respectively from ultrasonic 

measurements43 on a δ Pu-3.4 at. % Ga alloy and from EXAFS measurements49 on a δ Pu-1.9 at. % Ga 

alloy.  In Table 5, the Debye temperatures of fcc metals calculated from phonon DOS derived from 

Born-von Kármán modeling of experimentally determined phonon dispersions are tabulated.  It is 

interesting to note that Au, γ-Fe, and δ Pu-Ga are the only fcc metals with ΘD(0) <  ΘD(∞).  The increase 

of ΘD with Ga content in the δ Pu Ga alloys is merely reflective of the proportional increase in Ga-Pu 

bonds which have a higher “bond Debye temperature” of 188 K.49 

 

4.  T(ξξξ) softening and the δ  →  α ’ transformation  

The experimental PDCs shown in Fig. 3 display a pronounced softening of the T[ξξξ] branch 

towards the L point. A similar feature (but occurring at about twice the energy and at a higher crystal 

momentum towards the L point) is also seen in a recent dynamic mean field theory (DMFT) 

calculation of the PDCs of δ-Pu11, (Fig. 6).  The softening of this T[ξξξ] mode is rather unusual in fcc 

metals, occurring in only two other systems: γ-Ce29 and β-La28, 40, whose PDCs determined by inelastic 

neutron scattering are reproduced in Fig. 7. The phonon softening in these two systems is temperature 

dependent, becoming more pronounced at lower temperatures and disappearing at higher temperatures. 

Based on this evidence, it has been proposed that the observed phonon softening is related to the fcc  

→ dhcp phase transformation which occurs in Ce and La at 283K and 660K respective ly.29 By 

analogy, the phonon softening observed in the present experiment on a Pu-Ga alloy may be related to 

the δ → α’ transformation which occurs upon cooling these materials to sub-ambient temperatures.50 
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Measurements of the temperature dependence of the PDCs are being planned in order to validate this 

hypothesis.  

 

The softening of the T[ξξξ] branch is also consistent with the crystallography of 

transformations that occur in γ-Ce, β-La, and δ Pu-Ga alloys. In all cases, the parent phase is the fcc 

crystal structure which is composed of hexagonal-close-packed atomic planes stacked along the [111] 

direction with an ABCABC…  stacking arrangement. The soft transverse mode at L suggests that a 

(111) plane could be easily sheared relative to its neighboring atomic planes to form new stacking 

arrangements.  In the case of Ce and La the product phase has a dhcp structure with an ABACABAC… 

stacking arrangement, while in the case of Pu-Ga alloys the product phase is a complex monoclinic 

structure51 which can also be viewed a distorted hexagonal-close-packed structure with an ABABAB… 

stacking arrangement. It is also possible that the phonon softening is related to the δ → γ transformation 

which occurs in pure Pu and produces a phase with a face-centered orthorhombic structure52 which can 

also be viewed as a stack of slightly distorted hexagonal packed atomic layers which have an 

ABABAB… stacking arrangement. Although this transformation is suppressed in the Pu-Ga alloy 

studied here, it is possible that the Ga does not completely remove an associated phonon softening. The 

low energy of the necessary shearing processes involved in these transformations can be seen in the 

inter-planar force constant of the T[ξξξ] mode (as derived from the 4NN B-vK model) which is more 

than an order of magnitude smaller than those of the transverse modes in the other two directions, (see 

Table 6).  

In order to more precisely relate the softening of the T[ξξξ] branch to the δ →α’ transformation 

in Pu-Ga alloys, we can employ the crystallographic models have been developed by Adler and 

Olsen53, and more recently by Jin et al.54  These models use as a starting point the crystallographic 

correspondence (111)δ || (020)α and [-110]δ || [100]α which has been established using transmission 
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electron microscopy by Zocco et al.55  Both sets of models predict stable transformation twins with 

(205)α twin planes also in agreement with the TEM observations.  

In these models, the distortion required to transform a region of the fcc δ phase crystal structure 

to the monoclinic α ' phase crystal structure can be decomposed into three elementary distortions. 

(i).  A shuffling operation transforms the fcc structure into an hcp structure by changing the 

stacking sequence of {111} planes 

(ii).  A homogeneous elastic strain distorts the hcp structure such that an enlarged 16 atom unit cell 

has lattice vectors which match the lattice vectors of the α’ phase. 

(iii). A set of periodic displacements modify the basis vectors of the distorted, enlarged hcp unit 

cell such that the α’ crystal structure is formed. In this step the lattice vectors do not change, only 

the internal coordinates of the atoms with respect to these vectors. Thus this step does not produce 

any elastic strain. 

 

  The observed phonon softening can be related to the shuffling operation described above. The 

shuffling operation requires that alternating (111) planes in the fcc lattice be rigidly translated in order 

to produce the hcp lattice. There are an infinite number of ways in which a shuffling can transform the 

fcc lattice into the hcp lattice. The simplest mode is a single elementary shuffle and is used in the 

correspondence suggested Adler and Olsen53 which agrees with the TEM observations.55 In this case, 

every other (111) layer is rigidly shifted by 1/6[-211]. This shuffling operation is a combination of a 

zone boundary T[ξξξ] phonon and a homogeneous shear parallel to the (111) plane. Thus the 

experimentally observed softening of the T[ξξξ] phonon is consistent with the proposed model, but we 

should emphasize that it is only one component of the shuffle operation which itself is only one part of 

the entire transformation process.  



For submission to Phys. Rev. B      
    
 

 

14

 

     Other more complex shuffling modes are also considered by Jin et al.54  They all involve rigidly 

shifting {111} planes to modify the stacking sequence. In these cases, the shuffle includes one or more 

transverse phonons propagating in the <111> direction but with different wave-vectors. Again, a 

homogeneous shear parallel to the {111} plane is necessary to complete the shuffle in addition to the 

appropriate phonon. Each of these proposed shuffle modes lead to different predictions for the habit 

plane and volume fraction of each twin variant. Further experimental data is needed to clarify which 

shuffle mode is involved in the phase transformation. In all cases however, a softening of the T[ξξξ] 

branch is consistent with the crystallographic models of the δ  → α’ transformation. 

 

5.  The Kohn effect in the T1(ξξ0) branch 

In Fig. 3 the T1 branch along [ξξ0] exhibits a “kink” with positive dispersion towards the X 

point, indicative of a Kohn- like anomaly similar to those observed in other fcc metals such as Th35, 

Au31, Pt25 and Pd.30  By analogy with all other phonon anomalies observed in metals, this is likely 

caused by electronic effects.19  As the speed of sound of this mode is given by ρC′ , (ρ = density), it 

is clear that this anomaly is directly responsible for the small value of C' and implies a soft response of 

the system to a volume-conserving tetragonal distortion. This may be associated with the high-

temperature phase transformation of Pu from δ to δ ' (body centered tetragonal) and to ε (body centered 

cubic) which involve just a tetragonal distortion of this type via the so-called Bain path.56 Furthermore, 

these transformations may involve anharmonicity and phonon entropy.11  

   

As mentioned in the introduction, Pu sits in a unique position within the actinide series between 

elements with itinerant (bonding) and localized (non-bonding) 5f electrons1,2. The different 

polymorphs of Pu have 5f electrons that span the range between itinerant and localized behavior. The 
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exact nature of the 5f electrons in Pu is extremely sensitive to changes in intensive parameters such as 

temperature4, pressure57 and chemical potential (alloying).58  In general, anomalies in PDCs such as 

those we observe here in δ Pu-Ga are derived from electronic interactions and some of the same 

anomalies were previously known in other actinide systems. This suggests that the 5f electronic 

structure is the underlying cause for these anomalies. Furthermore, valence instability in the 5f 

electronic structure, together with strong electron-phonon coupling, is likely the underlying reason for 

both the phonon anomalies we observe as well as the rich variety of polymorphic phase transitions 

present in this exotic element. 

 

6. Theoretical Considerations  

As evident in Fig. 6, the present IXS experiment validates the main qualitative predictions of a 

recent DMFT calculation by Dai et al.  for δ Pu 
11 in terms of (a) a low shear elastic modulus C’, (b) a 

Kohn-like anomaly in the T1[011] branch, and (c) a large softening of the T[111] modes towards L. 

Such experimental-theoretical agreements give credence to the DMFT approach for the theoretical 

treatment of 5f electron systems of which Pu is a classic example. However, while there is good 

qualitative agreement between theory and experiment, quantitative differences exist.  These are: (i) 

position of the Kohn anomaly along the T1[011] branch, (ii) the energy maximum of the T[111] modes 

and (iii) the softening of the calculated T[100] branch near the X point, which is not observed 

experimentally in the fcc Pu-Ga alloy. 

 

Dai et al.11 also calculated the phonon dispersion curves for the bcc ε-Pu phase with the DMFT 

method and found that several modes are totally unstable at T = 0. Existence of ε-Pu at high 

temperature4 was attributed to anharmonicity and final temperature phonon entropy11.  On the other 

hand, the phonon dispersion curves for δ−Pu  (Fig. 6) were also computed at T = 0.  All modes are 
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found to be stable (no negative frequencies) at all q-values, in spite of the fact that pure δ-Pu is the 

equilibrium phase only at high temperature in the range 592 - 724 K.4 

More recently, using a simple inclusion of electron correlations in a Friedel Model of the 

density of f-electron states, and an empty-core pseudopotential treatment for the three free electrons per 

atom, Harrison59 calculated the phonon dispersion curves of δ-Pu, which contain neither the Kohn 

effect in the T1(110) branch nor any softening in the T(111) modes observed experimentally in this 

study.  The derived elastic constants were also in poor agreement with both the earlier ultrasonic 

work43 and our IXS data. The predicted anisotropy factor was 19 compared with an experimental factor 

of 6-7 (Table 4). 

These differences between the experimental and calculated phonon dispersions are significant 

and thus provide the framework for refined theoretical treatments12 and further experiments in Pu and 

other 5f systems. 

 

V. Concluding Remarks 

     In this paper we have rendered a crystal dynamics analysis of the PDCs of an fcc δ Pu-Ga alloy  

determined recently8  using a microbeam on large grain sample experimental concept with high 

resolution inelastic x-ray scattering to obviate the roadblocks of phonon dispersion measurements on 

Pu-bearing materials with conventional inelastic neutron scattering.  Our results (Fig. 3) represent the 

first full PDCs ever determined for any Pu-bearing system and end a 40 year quest for this fundamental 

data for strongly correlated 5f systems typified by δ-Pu and its alloys.  Our PDC data confirms directly 

the very high elastic anisotropy of fcc Pu-Ga alloy (highest of all known fcc metals) discovered using 

ultrasonic measurements43 almost 3 decades ago. More importantly is the pronounced softening 

observed for the T[ξξξ] branch.  This softening is found to be crystallographically consistent with the 

meta-stability of the fcc phase of the Pu-Ga alloy and its transformation to a pseudo hexagonal-closed-
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pack, monoclinic α’ phase via a martensitic transformation. A temperature dependence study of the 

T[ξξξ] branch, which is now underway, will hopefully clarify the role of lattice dynamics in the δ → 

α’ transformation in Pu-Ga alloys. 
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Figure Captions  
 
 
Figure 1. Optical micrograph showing the large-grain microstructure of the fcc Pu-Ga 2 at. % alloy 
used in this study.   The white box denotes the footprint on the sample of a 30 µm x 60 µm x-ray beam 
used to collect the HRIXS phonon spectra. 
 
Figure 2.  Representative inelastic x-ray scattering spectra for the longitudinal acoustic phonon branch 
along the [111] direction in a δ Pu-2 at. % Ga alloy. The experimental data (points) are shown together 
with the results of the best fit model (lines) of the phonon and elastic contributions. In each panel, the 
reduced phonon wave vectors, ξ, is indicated to the left of the spectra and the phonon energy to the 
right.  
 
Figure 3.  The phonon dispersion curves of a δ fcc Pu-2 at. % Ga alloy at room temperature. The 
longitudinal and transverse modes are denoted L and T respectively. The circles represent the 
experimental points. The transverse branches along each of the [ξ00] and [ξξξ] directions are 
degenerate. Along the [ξξ0] direction, the two transverse branches are distinct: T1[011] polarized along 

<011
__

> and T2[011] polarized along <001>. Note the softening of the TA[ξξξ] branch towards the L 
point. The solid curves represent a fourth-nearest neighbor (4NN) Born-von Kármán model fit to the 
experimental data.  The lattice parameter of our samples is a = 0.4621 nm.  
 
Figure 4.  A statistical estimate of the goodness of fit χ2 for a Born-von Kármán model plotted as a 
function of the number of nearest neighbors included in the model. 
  
Figure 5. (a) The density of states (DOS), (b) lattice specific heat and (c) Debye temperature of an fcc 
Pu-2 at. % Ga alloy calculated from a 4NN Born-von-Kármán model. Critical points in the DOS 
obtained from the symmetry points in the zone are indicated in (a). 
 
Figure 6.  Comparison of calculated phonon dispersions (lines) for pure δPu using DMFT-linear 
response theory by Dai et al.11 with the present experimental dispersions (circles) for an fcc δ Pu-Ga 
alloy, showing overall qualitative agreement. 
 
Figure 7.  Room temperature phonon dispersion curves of (a) fcc γ-Ce29 and (b) fcc β-La28, showing 
softening of the T[ξξξ] branch observed similarly in the current Pu-Ga alloy. In each case, the smooth 
curves represent a 8NN Born-von Kármán force-constant model fit to the inelastic neutron scattering 
data. (Reproduced with permission from the authors). 
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Table 1.  Normal mode phonon energies for the symmetry branches in a δ  Pu- 2 at.% Ga alloy at 
room temperature. 
 
      L (0, 0, ξ)         
ξ     meV     .            
0 0  
0.185 2.38 ± 0.3  
0.296 4.23 ± 0.2  
0.407 6.0   ± 0.2  
0.506   7.45 ± 0.2  
0.619 8.85 ± 0.3  
0.729 10.4 ± 0.2  
0.838 11.8 ± 0.2  
0.951 12.6 ± 0.3  
0.941 12.21 ± 0.4  

 
       L (0, ξ,  ξ)     
ξ     meV     .               
0 0  
0.1 2.42 ± 0.06 
0.2 4.63 ± 0.12 
0.25 6.13 ± 0.14 
0.35 8.53 ± 0.3 
0.4 9.23 ± 0.11 
0.51 10.28 ± 0.3 
0.56 10.37 ± 0.4 
0.66 10.65 ± 0.2 
0.72 9.72 ± 0.4 
0.81 8.54 ± 0.4 
 
        L (ξ, ξ, ξ)   
ξ     meV     .              
0 0  
0.072 2.27 ± 0.1 
0.1 3.11 ± 0.12 
0.15 4.93 ± 0.28 
0.2 6.41 ± 0.15 
0.23 7.45 ± 0.15 
0.28 9.02 ± 0.3 
0.32 10.27 ± 0.2 
0.35 10.9 ± 0.2 
0.4 11.91 ± 0.3 
0.43 12.1 ± 0.4 
0.45 12.6 ± 0.3 
0.47 12.8 ± 0.3    
0.48 12.8 ± 0.3    

 
       T (0, 0, ξ) 
ξ                 meV     .            
0 0   
0.15 1.93 ± 0.1  
0.2 2.52 ± 0.1  
0.3 3.82 ± 0.15  
0.4 4.79 ± 0.13  
0.6 6.17 ± 0.082  
0.75 6.72 ± 0.07  
0.9 6.93 ± 0.08  
1 6.92 ± 0.09  
 
      T2 (0, ξ, ξ) 
ξ     meV     .            
0 0  
0.2 3.57 ± 0.1 
0.4 6.89 ± 0.15 
0.6 9.75 ± 0.25 
0.8 12.34 ± 0.4 
 
       T1 (0, ξ, ξ) 
ξ     meV     .            
0 0   
0.2 1.45 ± 0.05  
0.3 2.14 ± 0.06  
0.45 3.56 ± 0.1  
0.5 3.9   ± 0.1  
0.6 5.01 ± 0.15  
0.7 5.43 ± 0.3  
0.85 6.49 ± 0.3  
 
        T (ξ, ξ, ξ)  
ξ                 meV     .            
0 0  
0.075 1.22 ± 0.1 
0.1 1.52 ± 0.07 
0.15 2.164 ± 0.06 
0.2 2.56 ± 0.06 
0.3 2.83 ± 0.06 
0.4 2.34 ± 0.06 
0.5 1.98 ±  0.06
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                  Table 2.   Born von-Karman atomic force constants, (Nm-1) 
         
Constraints for 8NN and 7NN: 8(5ZZ)=9(5YY) - 5XX;  8(5XY)=3(5XX - 5YY);  3(7YZ)=7XY; 2(7XZ)=7XY  
Constraints for 6NN and 5NN: 8(5XY)=3(5XX - 5YY)      
No constraints for 4NN, 3NN and 2NN.      
         
  2NN 3NN 4NN 5NN 6NN 7NN 8NN 

1XX  8.305 8.1149 9.4001 9.3616 9.2694 9.145 9.0172 

1ZZ  -2.081 -0.7228 -2.1735 -2.2841 -2.3653 -2.5584 -2.1621 

1XY  8.557 11.3954 11.296 11.2949 11.2981 11.4838 11.5481 
         

2XX  -1.929 -0.7896 -3.0938 -2.9988 -3.0892 -2.9408 -2.8591 

2YY  -0.707 -0.1357 0.9046 0.9719 1.1133 1.2634 0.6954 
         

3XX   -1.3769 -0.5516 -0.4387 -0.3527 -0.4641 -0.7061 

3YY   0.4561 -0.2943 -0.2915 -0.2499 -0.0928 -0.1324 

3YZ   -0.587 -0.4259 -0.4245 -0.4224 -0.438 -0.5226 

3XZ   -0.5389 -0.3239 -0.3074 -0.3014 -0.3401 -0.2841 
         
4XX    -0.0657 -0.0284 -0.0586 -0.1854 -0.0202 

4ZZ    0.9747 0.974 0.9729 1.0115 0.7709 

4XY    -0.4969 -0.538 -0.5856 -0.6857 -0.8681 
         

5XX     -0.084 -0.0582 0.0141 0.3726 

5YY     -0.0369 -0.0141 -0.1258 0.0303 

5ZZ     -0.0015 -0.0694 -0.1433 -0.0125 

5XY     -0.0176 -0.0165 0.0525 0.1284 
         

6XX      -0.0698 -0.1863 -0.031 

6YZ      0.0255 0.0966 0.218 
         

7XX       0.0003 0.0425 

7YY       0.1319 -0.0184 
7ZZ       -0.048 -0.0279 
7YZ       -0.0056 -0.0186 
7XZ       -0.0084 -0.0279 
7XY       -0.0168 -0.0557 
         
8XX        -0.9241 
8YY        0.0101 
         

χ2  2010.8 67.8 35.6 33.7 27.7 21.1 14.1 
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Table 3.  Sound velocities v (ms-1), and elastic moduli, Ci j for δ  Pu-2 at. % Ga (GPa).  The elastic 
moduli for both a Pu-3.4 at. % Ga alloy by ultrasonics and pure δ  Pu calculated using DMFT are 
also listed for comparison  
 
V100 L   = 1586 ± 20    V110 L   = 1894 ± 20  V111 L   = 2080 ± 30 
V100 T   = 1379 ± 30  V110 T1  = 566 ± 4  V111 T   = 979 ± 45 
     V110 T2  = 1411 ± 16  
 
 
       System       C11        C12        C44  Remarks   
________________________________________________________________ 
δ Pu-2 at. % Ga 35.3 ± 1.4  25.5 ± 1.5 30.53 ± 1.1 This work 
 
δ Pu-3.4 at. % Ga 36.28  26.73  33.59  Ultrasonics43 
 
δ Pu   34.56  26.81  33.03  DMFT 11 
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Table 4. Elastic constants Ci j of fcc metals (in units of GPa) at 300K - Cauchy inequality: C44 – 
C12, and anisotropy factor: C44/1/2[C11 – C12].  Except for Rh, Ir, Pt, Th and Pu-Ga, all elastic 
moduli were determined from inelastic neutron scattering measurements. 
 
      Cauchy inequality Anisotropy factor 
Metal  C11 C12 C44               C44 – C12      2C44/[C11 – C12] Ref.        .            
Al  106.8 60.7 28.2  - 32.5   1.223  23 
 
Ir (ultrasonic) 600 260 270  +10   1.588  24 

 
Pt  (90K) 346.7 250.7 76.5  -174.2   1.594  25 
     (ultrasonic) 
 
Rh (ultrasonic) 413 194 184  -10   1.680  26 
 
Ni  250.8 150.0 123.5  - 26.5   2.450  27 
 
β-La  (300K) 34.47 20.38 17.96  - 2.42   2.549  28 
 
γ-Ce  24.1 10.2 19.4   + 9.2   2.79  29 
 
Pd  227.1 176.1 71.7             - 104.4   2.811  30 
   
Au  192.3 163.1 42.0             - 121.1   2.876  31 
 
Ag  124.0 93.7 46.1   - 47.6   3.042  32 
 
Cu  168.4 121.4 75.4   - 46.0   3.208  33 
 
Ca  27.8 18.2 16.3     - 1.9   3.396  34 
 
Th (ultrasonic) 75.3 48.9 47.8     - 0.11  3.621  35, 36 
 
Sr  15.3 10.3 9.9     -0.4   3.960  37 
 
Pb  49.5 42.3 14.9    - 27.4   4.138  38, 39 
 
β-La  (660K) 28.46 20.41 16.53             -  3.88   4.106  40 
 
Yb  18.6 10.3 17.7    + 7.4   4.265  41 
 
γ-Fe (1428K) 154 122 77  -45   4.813  42 
 
δ Pu-Ga (IXS) 35.30 25.5 30.53    + 5.03  6.059        This work 
[2 at. % Ga] 
 
δ Pu-Ga (ultra) 36.28 26.73 33.59     +6.86  7.03  43 
[3.4 at. % Ga]  
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Table 5.  Calculated Debye temperatures ΘD of fcc metals from DOS derived from B-vK 
modeling of experimental phonon dispersions          
Metal           Θ0 (K)               Θ∞ (K)           Θ0  > Θ∞

(a)      B-vK Model(b)    Ref.        .    
Ni   450  385  Y  5NN  27 
 
Al   410  395  Y  8NN  23 
 
Cu   333  313  Y  6NN  33 
 
γ-Fe   324  330  N  6NN  42 
 
Ag   223  215  Y  4NN  32 
 
Ca   216  213  Y  8NN  34 
 
Pd     - (c)  275      30 
 
Pt (90K)    - (c)  230      25 
   
Au   159  183  N  4NN  31 
 
Th    158  142  Y  7NN  35 
 
β-La (300K)  139  122  Y  8NN  28 
 
γ-Ce    4f15d16s2 135  119  Y  8NN  29 
  
β-La (660K)  134  123  Y  8NN  40 
 
Yb       4f145d06s2 109  105  Y  2NN  41 
 
Pb      - (c)  88             >8NN  38 
  
δ Pu-Ga   5f56d17s2 114  119  N             4NN  This work 
         (2 at. %)           
δ Pu-Ga     120(d)    -(c)    EXAFS  49 
       (1.9 at. %)            
δ Pu-Ga     115    -(c)    ultrasonics 43 
        (3.4 at. %)           
δ Pu-Ga     127    -(c)    ultrasonics 43 
        (6.8 at. %)           
δ Pu-Ga     133    -(c)    ultrasonics 43 
       (10.2 at. %)           
__________________ 

(a)   θ0 , θ∞ =  Debye temperatures at 0 K and ∞ K respectively. For all fcc metals listed above, θ0  > θ∞, except for 
 γ-Fe, Au, δ Pu-Ga.                   

(b)   NN = nearest neighbors.  8NN means that interactions up to 8 nearest neighbor have been taken into account for  
        a good fit of the PDC data with the B-vK model.            

(c)    Not calculated 
(d)    Derived from the Pu-Pu  bond correlation.   The corresponding Debye temperature from the Ga-Pu correlation is 188K. 
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Table 6.  Interplanar force constants (Nm-1) for δ  Pu-2 at. % Ga calculated from the 4NN  
                B-vK model

 
Branch  Φ 1      Φ 2      Φ 3     Φ 4                    

 ____________________________________________________________ 
 [00ξ] L 70.552            -11.138 
       [00ξ] T 22.156     3.09  
 
        [0ξξ] L 28.136   37.802  -5.98  -1.128 
        [0ξξ] T2 72.912  -3.468  -2.36   1.952 
        [0ξξ] T1 22.95  -4.014  -0.796   0.864 
 
        [ξξξ] L 74.774  -6.884   
 [ξξξ] T   1.826    2.548     
__________________________________________________________________                   
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Fig. 1 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Beam size: 
30 µm x 60 µm 
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Fig. 2 
 
 
 

 
       

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c)  q = 0.32 (d)  q = 0.47 

10.3 meV
12.8 meV

 

(a)  q = 0.072 (b)  q = 0.15 

4.93 meV

2.77 meV
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Fig 3 
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Fig. 4 
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Fig. 5                                      
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Fig. 6 
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Fig. 7 
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